Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao,* Ji-Wei Liu, Li-Hua Huo and Hui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080,
People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.051$
$w R$ factor $=0.097$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua(benzene-1,4-dioxyacetate)bis(2,2-bipyridine)cobalt(II) tetrahydrate

The title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, comprises a neutral $\mathrm{Co}^{\text {II }}$ complex and four solvent water molecules. The $\mathrm{Co}^{\mathrm{II}}$ ion exhibits a slightly distorted octahedral configuration, defined by one O atom of the diacetate ligand, four N atoms of the 2,2-bipyridine ligands and one water molecule. The presence of hydrogen bonding and $\pi-\pi$ stacking interactions leads to a supramolecular network structure.

Comment

Benzene-1,4-dioxyacetic acid (1,4- BDOAH_{2}), which has versatile binding ability, is a good candidate for the construction of supramolecular architectures. However, there is, as yet, limited structural information on complexes derived from the $1,4-\mathrm{BDOAH}_{2}$ ligand. Recently, we have reported some mononuclear structures containing the $1,4-\mathrm{BDOA}$ dianion, namely $\left[\mathrm{MnCl}(1,10 \text {-phenanthroline })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(1,4-$ BDOA) $\cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Gao, Liu, Huo, Zhao \& Zhao, 2004), $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,4-\mathrm{BDOA})$ (Liu, Huo et al., 2004), $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,4-\mathrm{BDOA})$ (Liu, Gao et al., 2004), and $\left[\mathrm{Co}(\text { triethanolamine })_{2}\right](1,4-\mathrm{BDOA})$ (Gao, Liu, Huo \& Ng, 2004), in which the carboxylate ligands do not coordinate to metal ions but rather function as counter-ions. In order to explore further the coordination behavior of metal ions with $1,4-\mathrm{BDOAH}_{2}$, we isolated a new $\mathrm{Co}^{\mathrm{II}}$ complex, $[\mathrm{Co}(1,4-$ BDOA $\left.)\left(2,2^{\prime} \text {-bipy }\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (I), the crystal structure of which is reported here.

As shown in Fig. 1, the crystal structure of (I) consists of a neutral cobalt complex and four solvent water molecules. The Co atom is six-coordinate within a distorted octahedral $\mathrm{N}_{4} \mathrm{O}_{2}$ environment, defined by four N atoms of two $2,2^{\prime}$-bipy molecules, one O atom of a monodentate carboxylate ligand and one aqua ligand. The chelation of the $2,2^{\prime}$-bipy molecules is unsymmetrical, with the $\mathrm{Co}-\mathrm{N}$ bond distances varying from 2.081 (2) to 2.104 (2) \AA. The distance of $\mathrm{Co}-\mathrm{O}$ (carboxylate) [2.106 (2) \AA] is slightly shorter than that of $\mathrm{Co}-\mathrm{O}$ (water) [2.125 (2) \AA]. Around the Co atom, the cis angles vary from 78.59 (8) to $95.58(8)^{\circ}$, and the trans angles from 170.42 (7) to

Received 19 July 2004
Accepted 28 July 2004
Online 7 August 2004

Figure
ORTEPII plot (Johnson, 1976) of (I), with displacement ellipsoids drawn at the 30% probability level, showing the hydrogen-bonding interactions as broken lines.

Figure 2
Packing diagram for (I). Dashed lines indicate hydrogen bonds.
$173.55(7)^{\circ}$. The $2,2^{\prime}$-bipy ligands are nearly perpendicular to each other [dihedral angle $=85.6(3)^{\circ}$]. Extensive hydrogen bonding exists between the uncoordinated carboxylate O atoms and solvent water molecules, as well as the intramolecular interaction shown in Fig. 1; geometric parameters are given in Table 2. There are also $\pi-\pi$ stacking interactions in the crystal structure, with the closest of these involving centrosymmetrically related $2,2^{\prime}$-bipy ligands; the shortest $C g \cdots C g$ ($C g$ is the centroid of the pyridine ring) contact of 3.8582 (12) \AA occurs between rings containing atoms N 3 and $\mathrm{N} 4^{\mathrm{i}}$ [symmetry code: (i) $1-x, 2-y, 1-z$]. In this way, a supramolecular three-dimensional network structure is constructed, as illustrated in Fig. 2.

Experimental

Benzene-1,4-dioxyacetic acid was prepared according to the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was prepared by the addition of a stoichiometric amount of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mmol}), \mathrm{NaOH}(40 \mathrm{mmol})$
and $2,2^{\prime}$-bipy (20 mmol) to a hot aqueous solution of $1,4-\mathrm{BDOAH}_{2}$ (20 mmol), with subsequent filtration. Pink crystals were obtained at room temperature over several days. Analysis calculated for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{CoN}_{4} \mathrm{O}_{11}$: C 52.56 , H 5.00 , N 8.17%; found: C $52.81, \mathrm{H} 4.94$, N 8.26\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-$
$4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=685.54$
Monoclinic, $P 22_{1} / n$
$a=15.639(3) \AA$
$b=10.152(2) \AA$
$c=19.996(4) \AA$
$\beta=92.23 .(3)^{\circ} \AA$
$V=312.3(11) \AA^{3}$
$Z=4$
$D_{x}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 23569 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.61 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pink
$0.36 \times 0.24 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID

diffractometer

ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.811, T_{\text {max }}=0.899$
28373 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.097$
$S=1.01$
7075 reflections
445 parameters
H atoms treated by a mixture of independent and constrained refinement

7075 independent reflections 4616 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-20 \rightarrow 20$
$k=-11 \rightarrow 13$
$l=-25 \rightarrow 25$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0409 P)^{2}\right. \\
\quad+0.6545 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{-0.24 \mathrm{e}^{-3}}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Co1-O1	$2.106(2)$	$\mathrm{Co} 1-\mathrm{N} 2$	$2.103(2)$
$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.125(2)$	$\mathrm{Co} 1-\mathrm{N} 3$	$2.104(2)$
Co1-N1	$2.090(2)$	$\mathrm{Co} 1-\mathrm{N} 4$	$2.081(2)$
O1-Co1-O1 W	$87.40(8)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 4$	$91.85(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$94.00(7)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$78.59(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$90.24(8)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$	$95.58(8)$
O1-Co1-N3	$170.42(7)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$171.03(8)$
O1-Co1-N4	$91.35(7)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3$	$91.97(8)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1$	$95.58(8)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 4$	$94.21(8)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 2$	$173.55(7)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 4$	$79.19(8)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 3$	$91.34(8)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2$	0.85 (2)	1.79 (3)	2.626 (3)	165 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 5 W^{\text {i }}$	0.86 (3)	1.92 (4)	2.735 (3)	159 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 4 W$	0.85 (3)	2.09 (4)	2.924 (4)	165 (5)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 5 W^{\mathrm{ji}}$	0.84 (3)	2.31 (4)	3.138 (4)	166 (4)
$\mathrm{O} 3 W-\mathrm{H} 3 W 1 \cdots \mathrm{O} 2 W^{\text {iii }}$	0.85 (3)	2.01 (4)	2.846 (4)	168 (5)
$\mathrm{O} 3 W-\mathrm{H} 3 W 2 \cdots \mathrm{O} 2$	0.85 (3)	1.99 (4)	2.813 (3)	163 (4)
$\mathrm{O} 4 W-\mathrm{H} 4 W 1 \cdots \mathrm{O}$	0.86 (3)	1.86 (3)	2.722 (3)	176 (4)
$\mathrm{O} 4 W-\mathrm{H} 4 W 2 \cdots \mathrm{O} 1 W^{\text {i }}$	0.85 (3)	2.32 (4)	3.170 (3)	172 (4)
O5W-H5W1...O6	0.85 (3)	1.87 (3)	2.728 (3)	175 (4)
O5W-H5W2 \cdots O3 $W^{\text {iv }}$	0.86 (2)	1.93 (3)	2.779 (4)	168 (3)

metal-organic papers

C-bound H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (aliphatic) and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ in the riding-model approximation. Water H atoms were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and 1.39 (1) \AA, respectively, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Educational Committee

Foundation of Heilongjiang Province, and Heilongjiang University for supporting this work.

References

Gao, S., Liu, J. W., Huo, L. H. \& Ng, S. W. (2004). Acta Cryst. E60, m462-m464. Gao, S., Liu, J. W., Huo, L. H., Zhao, H. \& Zhao, J. G. (2004). Acta Cryst. E60, m113-m115.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, J. W., Gao, S., Huo, L. H. \& Ng, S. W. (2004). Acta Cryst. E60, m439-m440.
Liu, J. W., Huo, L. H., Gao, S., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m517-m518.
Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

